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In the present paper we investigate optimal continuous algorithms in n-term
approximation based on various non-linear n-widths, and n-term approximation by
the dictionary V formed from the integer translates of the mixed dyadic scales of the
tensor product multivariate de la Valle� e Poussin kernel, for the unit ball of Sobolev
and Besov spaces of functions with common mixed smoothness. The asymptotic
orders of these quantities are given. For each space the asymptotic orders of non-
linear n-widths and n-term approximation coincide. Moreover, these asymptotic
orders are achieved by a continuous algorithm of n-term approximation by V,
which is explicitly constructed. � 2000 Academic Press

1. INTRODUCTION

Let X be a quasi-normed linear space and 8=[.k]�
k=1 a family of

elements in X (a quasi-norm & }& is defined as a norm except that the tri-
angle inequality is substituted by: & f+ g&�C(& f &+&g&) with C an
absolute constant). Consider n-term approximation of elements f # X by
linear combinations of the form

.= :
k # Q

ak.k ,

where Q is a set of natural numbers with |Q|=n. Here and later |Z|
denotes the cardinality of the set Z. It is convenient to assume that some
elements of 8 can coincide, in particular, 8 can be a finite set, i.e., the
number of distinct elements of 8 is finite. Denote by Mn (8) the set of all
these linear combinations. Notice that the set Mn (8) is not linear. If the
family 8 is bounded, i.e., &.k&�C, k=1, 2, ..., and the span of 8 is dense
in X, then 8 is called a dictionary.
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If W/X, we can put

_n (W, 8, X) := sup
f # W

_n ( f, 8, X)= sup
f # W

inf
. # Mn(8)

& f&.&. (1)

The quantities _n ( f, 8, X) and _n (W, 8, X) are called the n-term
approximation by the family 8 of f and W, respectively.

There has recently been great interest in both the theoretical and practi-
cal aspects of n-term approximation. It is directly related to non-linear
approximation by trigonometric polynomials, by splines with free knots
and by wavelet decompositions. There are special applications of n-term
approximation to image and signal processing, numerical methods of PDE
and statistical estimation (see [1] for details). It is easy to check that if X
is separable and 8 is dense in the unit ball of X, then _n ( f, 8, X)=0 for
any f # X. Thus, the definition (1) is not suitable for dense dictionaries in
separable spaces. Such dictionaries are not practical and for many well-
known dictionaries with good properties the n-term approximation
_n (W, 8, X) has reasonable lower bounds for functions sets with common
smoothness. Such a dictionary will be considered in our paper. In general,
to obtain lower bounds on _n(W, 8, X) for well-known classes W of func-
tions families, 8 should be restricted by some ``minimality properties''
which at least well-known dictionaries would satisfy. This approach was
considered in [10], [7].

An other way to deal with n-term approximation by Mn (8) is to impose
continuity assumptions on the algorithms of n-term approximation. This
assumption which has its origin in the classical Alexandroff n-width is quite
natural: the closer objects are the closer their reconstructions should be.
On the one hand, any continuity assumption decreases the possibilities of
approximation. On the other hand, it tends to guarantee a lower bound for
n-term approximation. Moreover, it does not weaken the rate of the corre-
sponding n-term approximation for many well-known dictionaries and func-
tions classes. Namely, it is known that the best n-term approximation and
n-term approximation by continuous algorithm have the same asymptotic
order. This is shown again in our paper for the dictionary formed from the
integer translates of the mixed dyadic scales of the tensor product multi-
variate de la Valle� e Poussin kernel, and the unit ball of Sobolev and Besov
spaces of functions with a common mixed smoothness. Just as the con-
tinuity assumption on the algorithms of approximation by ``complexes''
leads to the Alexandroff n-width (see definition (4) below), the continuity
assumption on the algorithms of n-term approximation leads to various
continuous non-linear n-widths. Let us introduce some of them.

A (continuous) algorithm in n-term approximation from 8, is repre-
sented as a (continuous) mapping S from W into Mn (8). We can restrict
the approximations by elements of Mn (8) only to those using continuous
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algorithms and in addition only from families 8 from F(X), which we
define as the set of all bounded 8 whose intersection 8 & L with any finite
dimensional subspace L in X, is a finite set. The n-term approximation with
these restrictions leads to the non-linear n-width {n (W, X) which is given
by

{n (W, X) := inf
8, S

sup
f # W

& f&S( f )&, (2)

where the infimum is taken over all continuous mappings S from W into
Mn (8) and all families 8 # F(X). Similar to {n (W, X) is the non-linear
n-width {$n (W, X) which is defined by formula (2), but where the infimum
taken over all continuous mappings S from W into a finite subset of
Mn (8), or equivalently, over all continuous mappings S from W into
Mn (8) and all finite families 8 in X. Note that the restrictions on the
families 8 in the definitions of {n and {$n are quite natural. All well-known
approximation systems satisfy them.

Another non-linear n-width, introduced in [7], is based on restrictions
to continuous algorithms of n-term approximation. Before recalling this
notion let us motivate it. Let l� be the normed linear space of all bounded
sequences of numbers x=[xk]�

k=1 , equipped with the norm

&x&� := sup
1�k<�

|xk |,

and Mn the subset in l� of all x # l� for which xk=0, k � Q, for some set
of natural numbers Q with |Q|=n. Consider the mapping R8 from the
metric space Mn into X defined by

R8 (x) := :
k # Q

xk .k ,

if x=[xk]�
k=1 and xk=0, k � Q, for some Q with |Q|=n. From the defini-

tions we can easily see that if the family 8 is bounded, then R8 is a con-
tinuous mapping from Mn into X and Mn (8)=R8 (Mn). Thus, in this
sense, Mn (8) is a non-linear set in X, parametrized continuously by Mn .
On the other hand, any algorithm of n-term approximation of the elements
in W by 8 can be treated as a composition S=R8 b G for some mapping
G from W into Mn . Therefore, if G is required to be continuous, then the
algorithm S will also be continuous. These preliminary remarks are a basis
for the notion of the non-linear n-width :n (W, X) which is given by

:n (W, X) := inf
8, G

sup
f # W

& f&R8 (G( f ))&, (3)

219CONTINUOUS ALGORITHMS



where the infimum is taken over all continuous mappings G from W into
Mn and all bounded families 8 in X. In what follows, the families 8 in the
definitions (2)�(3) are conveniently represented in the form 8=[.k]k # Q

where Q is an at most countable set of indices.
There are other notions of non-linear n-widths. We would like to recall

some of these which are based on continuous algorithms of non-linear
approximations different from n-term approximation, and related to
problems discussed in the present paper.

The well-known and very old Alexandroff non-linear n-width an (W, X)
is defined by

an (W, X) := inf
G, K

sup
f # W

& f&G( f )&, (4)

where the infimum is taken over all complexes K/X of dimensions�n and
all continuous mappings G from W into K. See, e.g., [18], [3], [9] for
details regarding an . The non-linear manifold n-width $n (W, X) [2, 11] is
defined by

$n (W, X) := inf
R, G

sup
f # W

& f&R(G( f ))&, (5)

where the infimum is taken over all continuous mappings G from W into
Rn and R from Rn into X. The interested reader is referred to [3], [9] for
brief surveys on the non-linear n-widths an and $n of the classical Sobolev
and Besov classes.

The non-linear n-width ;n (W, X) is defined by

;n (W, X) := inf
R, G

sup
f # W

& f&R(G( f ))&, (6)

where the infimum is taken over all continuous mappings G from W into
Mn and R from Mn into X. This non-linear n-width has been introduced in
[7].

The non-linear n-widths introduced in (2)�(6) are different. However,
they possess some common properties and are closely related. Let W be a
compact subset of a quasi-normed linear space X. Then the following
inequalities hold

an (W, X)�;n (W, X)�:n (W, X), (7)

$2n+1 (W, X)�an (W, X)�;n (W, X)�$n (W, X), (8)

(see [9], [7]), and

{n+1 (W, X)�{$n+1 (W, X)�an (W, X)�{$n (W, X),
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and in addition

:n (W, X)={n (W, X)={$n (W, X)

for finite dimensional X (see Lemma 4).
Our attention is primarily focused on continuous algorithms in n-term

approximation and the relevant non-linear n-widths :n , {n , {$n for classes of
functions with common mixed smoothness. Interesting ideas concerning
non-linear n-widths, which are not based on continuous algorithms, have
been recently introduced in [13] and [16]. For other notions of non-linear
n-widths, see [18], [3]. Non-continuous algorithms of n-term approxima-
tion and the n-term approximation for classes of functions with bounded
mixed derivatives or differences, have been considered in [10], [17]. The
reader can also consult [1] for a detailed survey of various aspects of non-
linear approximation and applications, especially of n-term approximation.

A central problem in studying non-linear n-widths and the n-term
approximation _n(W, 8, X) of classes of functions is to compute their
asymptotic order if these classes are defined by a common smoothness. In
the present paper we investigate optimal algorithms of n-term approxima-
tion based on the non-linear n-widths :n , {n , {$n and the n-term approxima-
tion _n(W, V, X) by the dictionary V formed from the integer translates of
the mixed dyadic scales of the tensor product multivariate de la Valle� e
Poussin kernel Vm , for the unit ball of Sobolev and Besov spaces of func-
tions with a common mixed smoothness. Because of the close relationship
between :n , {n , {$n , ;n , $n and an , and because they are asymptotically
equivalent it is quite useful and natural to study them together.

Let us give a brief description of the main results of this paper.
Throughout this paper we will assume that A is a given fixed finite subset
of Rd. For 0<p, %��, let BA

p, % denote the Besov space of all functions on
the n-dimensional torus Td :=[0, 2?]d, for which the quasi-norm

& f &B A
p, %

:=& f &p+ :
: # A

| f |B :
p, %

(9)

is finite, where & }&p is the usual p-integral norm in Lp :=Lp (Td) and | } |B :
p, %

the Besov semi-quasi�norm determining the mixed smoothness of order :.
We will use the abbreviation for the special case A=[0]: Bp, % :=B[0]

p, % . The
Sobolev space WA

p is defined similarly by replacing | f | B :
p, %

in (9) by
| f |W:

p
:=& f (:)&p , where f (:) is the mixed derivative in the sense of Weil of

order :. (The definitions of | } |B:
p, %

and f (:) are given in Section 3.) Note
that the classical Besov and Sobolev spaces are special cases of BA

p, % and
WA

p . The main results which are proved in the present paper are the
asymptotic orders of the non-linear n-widths (2)�(6) and the n-term
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approximation (1) by the dictionary V, of the unit ball of the Sobolev
space WA

p and the Besov space BA
p, % in the space Lq .

It turns out that these asymptotic orders are closely related to the linear
problem

(1, x) � sup, x # Ao
+ , (10)

where Ao
+ :=[x # Rd

+ : (:, x)�1, : # A], 1 :=(1, 1, ..., 1) # Rd. Here and
later, we use the notation: (x, y) :=x1y1+ } } } +xdyd and Rd

+ :=
[x # Rd : x j�0, j=1, ..., d], where x j is the jth coordinate of x # Rd, i.e.,
x :=(x1 , ..., xd).

Let 1�r be the optimal value of (10) and & the linear dimension of the set
of solutions of (10), i.e.,

1�r :=sup [(1, x) : x # Ao
+], & :=dim [x # Ao

+ : (1, x)=1�r]. (11)

We use the notation F �� F $ if F<<F $ and F $<<F, and F<<F $ if
F�CF $ with C an absolute constant. Denote by #n any one of :n , {n , {$n ,
;n , an and $n . Let

SBA
p, % :=[ f # BA

p, % : & f &BA
p, %

�1]

and

SWA
p :=[ f # WA

p : & f &Wr
p
�1]

be the unit balls in Br
p, % and WA

p , respectively.
For 1<p, q<�, 2�%�� and A a finite subset in Rd, with some

restrictions on A and p, q we have

#n (SBA
p, % , Lq) �� (n�log& n)&r (log& n)1�2&1�%, (12)

#n (SWA
p , Lq) �� (n�log& n)&r. (13)

The asymptotic order (13) has been proven in [6] for an and $n . The
upper bound of (12)�(13) is given by a continuous non-linear algorithm of
approximation by the dictionary V which is constructed as follows.

For m # Zd
+ :=[k # Zd : kj�0, j=1, ..., d], we let the tensor product de

la Valle� e Poussin kernel Vm of order m be defined by

Vm (x) := `
d

j=1

Vmj
(x j),
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where

Vm (t) :=1+2 :
m

k=1

cos kt+2 :
2m

k=m+1

2m&k
m

cos kt=
sin(mt�2) sin(3mt�2)

m sin2(t�2)

is the univariate de la Valle� e Poussin kernel of order m. We put

Sm (x) := `
d

j=1

(2�3mj) Vm(x), (14)

and

Qk :=[s # Zd
+ : sj<3_2kj+1, j=1, ..., d]; hk :=3&1?(2&k1, ..., 2&kd).

(15)

We define the family V by

V :=[.k
s ]s # Qk , k # Zd

+
, .k

s :=S2k+1( } &shk). (16)

Here and later we use the notation: 2x :=(2x1, ..., 2xd) and xy :=
(x1y1 , ..., xdyd) for x, y # Rd.

From well-known properties of de la Vallee� Poussin kernels it follows
that V # F(Lq), 0<q��, and V is a dictionary. To establish the upper
bounds of (12)�(13) we explicitly construct a positive homogeneous con-
tinuous mapping G*: Y � Mn such that

sup
f # SY

& f&RV(G*( f ))&q<<E(n). (17)

where E(n) is the right-hand side of either (12) or (13), Y is either BA
p, % or

WA
p , respectively, and SY is the unit ball in Y.
Clearly from (17) we also obtain a upper bound for the n-term

approximation by V of SY. Moreover, we prove that under the same
conditions as those for (12)�(13)

_n (SBA
p, % , V, Lq) �� (n�log& n)&r (log& n)1�2&1�%, (18)

_n (SWA
p , V, Lq) �� (n�log& n)&r. (19)

This means that _n (SY, V, Lq) and #n (SY, Lq) have the same asymptotic
order which is achieved by the continuous algorithm S*=R8 b G* of
n-term approximation by V. The asymptotic orders of the n-term
approximation _n (W, Ud, X) by the dictionary Ud formed from the integer
translates of the mixed dyadic scales of the tensor product multivariate
Dirichlet kernel for the classes of functions with bounded symmetric mixed
derivatives or differences, have been obtained in [17]. In addition, these
orders are achieved by a greedy type algorithm, a non-continuous algo-
rithm of n-term approximation.
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The main results of the present paper were announced without proofs in
[8].

Our paper is organized as follows. In Section 2 we prove some estimates
for non-linear n-widths and n-term approximation by the canonical basis in
spaces of sequences with mixed norms, and also some equalities and
inequalities between non-linear n-widths. Other auxiliary facts concerning
the spaces BA

p, % and WA
p are given in Section 3. Section 4 is devoted to the

proofs of (12)�(13) and (17). In Section 5 we give the proofs of (18)�(19)
and an example of the asymptotic orders (12)�(13) and (18)�(19) for the
well-known Besov and Sobolev spaces with one bounded derivative and
difference, respectively.

2. NON-LINEAR WIDTHS AND n-TERM APPROXIMATION IN
SPACES OF SEQUENCES

For 0<p�� denote by lm
p the space of all sequences x=[xk]m

k=1 of
(complex) numbers, equipped with the quasi-norm

&[xk]&l mp=&x&l mp :=\ :
m

k=1

|xk | p+
1�p

with the change to the max norm when p=�. Denote by Bm
p the unit ball

in lm
p .

Lemma 1. Let 1�p, q�� and m>n�1. Denote by #n either one of
:n , ;n , {n , {$n and an . Then we have

#n (Bm
p , lm

q ) �� Ap, q (m, n),

where

n1�q&1�p, for p<q

Ap, q (m, n)={1, for p=q

(m&n)1�q&1�p, for p>q.

Moreover, we can explicitly construct a common positive homogeneous con-
tinuous mapping G: lm

p � Mn so that the asymptotic order of the n-width
#n (Bm

p , lm
q ) is achieved by the algorithm S :=RE b G, i.e.,

sup
x # Bmp

&x&S(x)&l mq <<Ap, q(m, n),

where E is the canonical basis in lm
q .
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Proof. For the proofs of this lemma for :n , ;n and an see [7] and [9].
Its proofs for {n and {$n are similar. K

Let 0<p, %��, N=[Nk]k # Q be a sequence of natural numbers, and
4=[*k]k # Q a sequence of positive numbers with Q an at most countable
set of indices. Denote by bN

p, %(4) the space of all such sequences
x=[xk]k # Q=[[xk

j ]Nk
j=1]k # Q , for which the mixed quasi-norm

&x&b N
p, % (4) :=\ :

k # Q

(&xk&Xk �*k)%+
1�%

, %<�,

is finite (the sum is changed to supremum for %=�), where X k :=lNk
p . Let

S N
p, %(4) be the unit ball in bN

p, %(4). If *k=1 for all k # Q, then we use the
abbreviations: bN

p, % :=bN
p, %(4) and SN

p, % :=SN
p, %(4). We also denote by SX

the unit ball in the linear normed space X.

Lemma 2. Let 0<p, q, %, {�� and let N=[Nk]k # Q be a sequence of
natural numbers, 4=[*k]k # Q and 4$=[*$k]k # Q sequences of positive
numbers, and [nk]k # Q a sequence of non-negative integers such that
�k # Q nk<�. Denote by #n any one of :n , ;n , {n , {$n and an . Assume that

#nk
(BNk

p , lNk
q )�bk , k # Q,

for the sequence of non-negative numbers [bk]k # Q , and Q=[k j]m
j=1 is

ordered so that

+k1
�+k2

� } } } +kj
� } } } ,

where +k :=bk *k �*$k and m=|Q|. For any natural number s�m, define

F%, { (s)={+ks
,

(�m
j=s +\

kj
)1�\,

for %�{

for %>{,
(20)

with \ :=%{�(%&{). Then we have

#n (SN
p, %(4), bN

q, {(4$))�F%, {(s),

where

n := :
s&1

j=1

Nkj
+ :

m

j=s

nkj
. (21)
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In addition, we can explicitly construct a positive homogeneous continuous
mapping G: bN

p, %(4) � Mn such that

_n (SN
p, %(4), E, bN

q, {(4$))� sup
x # S N

p, %(4)

&x&S(x)&BN
q, {(4$)�F%, {(s), (22)

where S :=RE b G and E is the canonical basis in bN
q, {(4$).

Proof. Since SN
p, %$(4)/SN

p, %(4) if %$<%, it suffices to prove Lemma 2
for %�{. We prove the case {�%<�, m=� and #n=:n of the lemma.
The other cases can be treated in a similar way with a slight modification.
Obviously, without loss of generality we can also assume bN

q, {(4$)=bN
q, { .

By Lemma 1 there are positive homogeneous continuous mappings
Gk : Xk � Mnk

such that the widths :nk
(SXk, Yk) are achieved by the algo-

rithms Sk , where Sk :=REk
b Gk , Xk :=lNk

p , Y k :=lNk
q and Ek is the canoni-

cal basis in Yk (the case nk�Nk which is not included in Lemma 1 is
trivial). This implies that for any xk # Xk

&xk&Sk(xk)&Y k�bk &xk&X k . (23)

Let us also use the abbreviations: X :=bN
p, %(4), Y :=bN

q, { and B :=SN
p, %(4).

We represent Xk and Y k as subspaces of X and Y, and the sequence
[Mnk

]k # Q as a subset of Mn , respectively. Thus we can identify the
sequence [Enk

]k # Q with E.
We first define a positive homogeneous continuous mapping y=S(x)

from X into Y with x=[xk]k # Q y=[ yk]k # Q , by putting

ykj :={xkj,
Skj

(xkj),
for j=1, ..., s&1
for j=s, s+1, ...

By (23) we have for x # X

&x&S(x)&{
Y= :

�

j=s

&xkj&Sk (xkj)&{
Ykj

� :
�

j=s

b{
kj

&xkj&{
Xkj� :

�

j=s

(&xkj&Xkj �*kj
){ +{

kj
.

Hence, for x # B

&x&S(x)&Y�F%, {(s) (24)
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in the case %={, and by the Ho� lder inequality

&x&S(x)&Y�\ :
�

j=s

+\
kj+

1�\

\ :
�

j=s

(&xkj&Xkj �*kj
)%+

1�%

�F%, {(s) (25)

in the case %>{.
Obviously, S is a positive homogeneous continuous mapping from X

into Y. Let us represent bN
�, � as l� or a subspace in l� . Then S can be

represented via the composition S=RE b G, where the mapping G: X � Mn

is given by G(x) :=S(x) for x # X, and n is defined in (21). Clearly, G is
positive homogeneous, continuous and satisfies (22). The lemma is
proved. K

Lemma 3. Under the assumptions and notation of Lemma 2 let p<�,
%<{, Q be a finite set with |Q|=m, and Nk�N*, nk�n*, k # Q. Then we
have for any natural number s�m

#n (SN
p, % (4), bN

�, {(4$))�\ :
s

j=1

+\
kj+

1�\

,

where n :=(s&1) N*+(m&s+1) n*. In addition, we can explicitly con-
struct a positive homogeneous continuous mapping G : bN

p, % (4) � Mn such
that

_n (SN
p, %(4), E, bN

�, {(4$))� sup
x # SN

p, % (4)

&x&S(x)&bN
�, { (4$)�\ :

s

j=1

+\
kj+

1�\

,

where S :=RE b G.

Proof. We use the notation in the proof of Lemma 2. We first define a
positive homogeneous mapping y=S(x) from X into Y with x=[xk]k # Q

and y=[ yk]k # Q , as follows. Let u=[uk]k # Q and v=[vk]k # Q be given by
uk=Sk (xk) and vk=xk&uk. For x=[xk]k # Q # X, we define

Dk=Dk (x) :=+&\�{
k &vk&Y k ,

and rearrange the set of indices Q so that Dr1
�Dr2

� } } } �Drm
. Then, the

mapping y=S(x) is defined by setting

yrj
i :={xrj

i &+\�{
rj

Drs
sign v rj

i
,

urj
i
,

if |vrj
i |�+\�{

rj
Drs

if |vrj
i

|<+\�{
rj

Drs

, j=1, 2, ..., s, i=1, ..., Nrj
,

and

yrj :=urj, j=s+1, ..., m.
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It is easy to check that S is continuous. We estimate &x&S(x)&{
Y by using

a technique of [14]. We have

&x&S(x)&{
Y=D{

rs
F\+ :

m

j=s+1

&vrj&{
Yr j , (26)

where F :=(�s
j=1+\

rj
)1�\. Let x=[xk]k # Q # B and put

:
m

j=s+1

(&xrj&X r j �*rj
)%=: =. (27)

Then, we have

:
s

j=1

(&xrj&Xr j �*rj
)%�1&=. (28)

From (23), (28) and the inequality Drj
�Drs

for j=1, ..., s, we obtain

D%
rs

F\� :
s

j=1

+\
rj

D%
rj
= :

s

j=1

+\
rj

+&\%�{
rj

&vrj&%
Yr j

� :
s

j=1

+&%
rj

b%
rj

&xrj&%
Xr j= :

s

j=1

(&xrj&X r j �*rj
)%�1&=.

Thus the following estimate has been proven

Drs
�(1&=)1�% F &\�%. (29)

On the other hand, using (23), (27) and the inequality Drj
�Drs

for
j=s+1, ..., m, we have

:
m

j=s+1

&vrj&{
Yr j= :

m

j=s+1

&vrj&%
Yr j &vrj&{&%

Yr j

� :
m

j=s+1

(&xrj&%
Xr j + (%&{)\�{

rj
)1�\D{&%

rj
�D%&{

rs
:
m

j=s+1

(&xrj&X rj �*rj
)%==D%&{

rs
.

Hence, by (26) and (29)

&x&S(x)&{
Y�=D{&%

rs
+D{

rs
F\

�=[(1&=)1�% F&\�%]{&% + F[(1&=)1�%F&\�%]{

=F {[=(1&=){�%&1+(1&=){�%]�F {�\ :
s

j=1

+\
kj+

{�\

.
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From the last estimate, similarly to the proof of Lemma 2, we complete the
proof of Lemma 3. K

Lemma 4. Let the linear space L be equipped with two equivalent
quasi-norms & }&X and & }&Y , and W be a subset of L. Denote by #n either one
of :n , {n , {$n , ;n , $n and an . Assume that W is compact in these norms and
#m(W, X)>0. Then we have

#n+m(W, Y)�#n(SX, Y) #m(W, X).

Proof. For the proofs of Lemma 4 for :n , ;n , $n and an see [7] and
[9]. Its proofs for {n and {$n are similar. For completeness of the present
paper we give the proof for {n . We put {n :={n(SX, Y) and {m :={m(W, X).
We can assume {n<�, because the opposite case is trivial. Given arbitrary
=>0, by definition there are families 8=[.k]k # Q and 8$=[.k]k # Q$ from
F(L), and continuous mappings S: W � Mm(8) and S$: SX � Mn (8$)
such that

& f&S( f )&X�{m+=, f # W, (30)

and

& f&S$( f )&Y�{n+=, f # SX. (31)

We put G( f ) :=f &S( f ), * :=supf # W &G( f )&X . By the assumptions and
(30) we have

0<{m�*�{m+=<�. (32)

Note that *&1G( f ) # SX for any f # W. We define 8* :=[.k]k # Q _ Q$ and
the continuous mapping S*: W � Mm+n (8*) by S*( f ) :=S( f )+
*S$(*&1G( f )). It is easily seen that f &S*( f )=*(*&1G( f )&S$(*&1G( f )))
for any f # W. Hence, we obtain by (31)�(32)

{n+m (W, Y)� sup
f # W

& f&S*( f )&Y�* sup
f # W

&*&1G( f )&S$(*&1G( f ))&Y

�* sup
f # SX

& f&S$( f )&Y�({m+=)({n+=)

for arbitrary =>0. This proves the lemma. K

Lemma 5. Let X be a quasi-normed linear space and W a compact subset
in X. Then we have

{n+1 (W, X)�{$n+1 (W, X)�an (W, X)�{$n (W, X).
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In addition if X is finite dimensional, we have

:n (W, X)={n (W, X)={$n (W, X).

Proof. The inequalities {n+1 (W, X)�{$n+1 (W, X) and an (W, X)�
{$n (W, X) follow from the definitions. Let K be an n-dimensional complex
in X and 9=[�k]m

k=1 (m>n) the set of nodes of K. Then obviously,
K/Mn+1(9). Hence we obtain the inequality {$n+1 (W, X)�an (W, X).

Let X be finite dimensional. Consider a bounded family 8=
[.k]k # Q # F (X) and a continuous mapping S: W � Mn (8). Since X is
finite dimensional, without loss of generality we can assume Q is a finite
subset in N. Let the continuous mapping G: W � Mn be defined by
G( f ) :=[xk]k # N with xk=ak for k # Q, and xk=0 for k � Q, if
S( f )=�k # Q ak.k . Then the mapping S can be represented by the com-
position S=R8 b G. This implies the inequality :n (W, X)�{n (W, X). On
the other hand, let 8=[.k]k # Q be a bounded family in X with &.k &�
C, k # Q, and G: W � Mn a continuous mapping. Given arbitrary =>0, by
the compactness of the ball [ f # X : & f &�C], there exists a finite family
8$=[.k]k # Q$ in X with the following property. For any . # 8 there is a
.$ # 8$ such that &.&.$&�=�n. Hence, it is easy to check that
& f&R8$(G( f ))&�& f&R8(G( f ))&+= for any f # W. This implies that
{$n (W, X)�:n(W, X)+= for arbitrary =>0. Therefore, we have :n (W, X)=
{n(W, X)={$n (W, X). K

3. SOBOLEV AND BESOV SPACES AND OTHER AUXILIARIES

Let us first make the notions of the Sobolev and Besov spaces BA
p, % and

WA
p precise by defining | } | B :

p, %
and | } |W :

p
for : # Rd and 0<p, %��.

As usual, f� (k) denotes the k-th Fourier coefficient, in the distributional
sense, of f # Lp . The :th mixed derivative f (:), in the sense of Weil, of f is
defined by

f (:) := :
k # Zd

o

f� (k)(ik): ei(k, } ),

where Zd
o :=[k # Zd : kj {0, j=1, ..., d]; (ik): :=(ik1):1 } } } (ikd):d; (ix) y :=

|x| y e(i?y sign x)�2. If d=1 and : is an integer, then f (:) coincides with the
usual :th derivative of f for :>0, f &(2?)&1 f� (0) for :=0, and the usual
:th primitive of f with the zero mean value for :<0. Recall that | } |W :

p
is

defined by

| f |W:
p
:=& f (:)&p .
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While | } |B :p, %
is defined as

| f |B :
p, %

:=\|Td
`
d

j=1

h&1&%;j
j &2 l

h f (s)&%
p dh+

1�%

, %<�,

(the integral changed to the supremum for %=�) for some triple l # Nd

and ;, s # Zd, satisfying the condition ;+s=:; lj>;j>0, j=1, ..., d, where
2l

h denotes the operator of lth mixed difference with step h # Td. It is well-
known that different triples l, p, s satisfying the last condition determine the
same quasi-norm & }&B :

p, %
.

We formulate the well-known Littlewood-Paley Theorem which plays a
basic role in multivariate trigonometric polynomial approximation. We
define the operator $k , k # Zd

+ , by

$k f := :
s # Pk

f� (s) ei(s, } ),

where Zd
+ :=[k # Zd : k j�0, j=1, ..., d] and Pk :=[s # Zd : [2kj&1]�

|sj |<2kj, j=1, ..., d] ([a] denotes the integer part of a). The Littlewood�
Paley Theorem (see, e.g., [12]) states that for 1<p<�, there holds the
following norms equivalence

& f &p �� " :
k # Zd

+

( |$k f | 2)1�2"p

.

This theorem can be generalized for the norm & }&WA
p

as follows. Let
S(B, x) :=sup: # B(:, x) be the support function of a subset B of Rd, and

+(B) :=inf [t>0 : te j # conv(B _ [0]), j=1, ..., d],

where conv G denotes the convex hull of G and [e j]d
j=1 is the canonical

basis in Rd.

Lemma 6. Let 1<p<� and A be a finite subset of Rd. Then we have

& f &WA
p

�� " :
k # Zd

+

( |2S(A, k)$k f |2)1�2"p

.

Proof. For the proof of this lemma see [6]. K

We now give descriptions of quasi-norm equivalences for & }&B Ap, %
. For

univariate functions f # Lp(T), the convolution Vm f :=f V Vm defines the de
la Valle� e Poussin sum of f. Next, we put

v0 f :=V1 f; vk f :=V2k f &V2k&1 f, k=1, 2, ...
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For multivariate functions f # Lp (Td), the mixed operator vk , k # Zd
+ , is

defined by

vk f :=vkd
} } } vk1

f,

where the univariate operator vkj
is applied to the variable xj . Note that

vk f is a trigonometric polynomial of order<2kj+1 in the variable
xj , j=1, ..., d.

Lemma 7. Let 1�p��, 0<%��, and A be a finite subset of Rd.
Then we have for 1<p<�

& f &B A
p, %

�� \ :
k # Zd

+

(2S(A, k) &$k f &p)%+
1�%

, %<�,

and for 1�p��

& f &B A
p, %

�� \ :
k # Zd

+

(2S(A, k) &vk f &p)%+
1�%

, %<�,

with the change to supremum for %=�.

Proof. The proof of this lemma is similar to those of Theorem 2.1 in
[4] and of Theorem 1.1 in Chapter II of [15]. K

If +(A)>0, then the set

1(!) :=[k # Zd
+ : S(A, k)�!]

is a finite subset of Zd
+ for any !�0 (see [4]). Put 1� (!) :=Zd

+"1(!) and
At :=A&t1 for a real number t. The following estimates of sums of
exponents, taken over the elements from 1(!) and 1� (!), were also proved
in [4].

Lemma 8. Let $, =>0, and A be a finite subset of Rd with +(A)>=d.
Then we have

:
k # 1(!)

2(1, k) �� 2!�r!&, :
k # 1� (!)

2&$S(A= , k) �� 2&$(1&=�r)!!&.

Moreover, r>= if and only if +(A)>=d.
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In what follows we use the notation a+ :=max[a, 0]. Let the linear
projection P(!) be defined by

P(!, f ) := :
k # 1(!)

vk f.

Lemma 9. Let 1�p, q��, 0<%, {�� and A be a finite subset of Rd

with +(A)>(d�p&d�q)+ . Then we have for every f # BA
p, %

lim
! � �

& f&P(!, f )&Bq, {
=0.

Proof. Clearly, by virtue of the standard inequality & }&B A
p, %

<<& }&B A
q, {

,
for p�q and %�{, it suffices to prove the lemma for the case p<q and
%>{. By Lemma 7 we have

& f&P(!, f )&{
Bq, {

�� :
k # 1� (!)

&vk f &{
q .

Since vk f # T2k , the well-known Nikol'skii inequality (see [12]) gives
&vk f &q<<2=(1, k) &vk f &p , where = :=d�p&d�q. Therefore, by the Ho� lder
inequality

& f&P(!, f )&{
Bq, {

<< :
k # 1� (!)

(2=(1, k) &vk f &p){

�\ :
k # 1� (!)

(2S(A=, k) &vk f &p)%+
{�%

\ :
k # 1� (!)

2&\S(A= , k)+
{�\

,

where \ :=%{�(%&{)>0. Hence, by Lemmas 7 and 8

& f&P(!, f )&B q, {
<<2&(1&=�r) !!&�\ & f &BA

p, %
.

Since =<r by Lemma 8, the right-hand side in the last inequality tends to
zero as ! � � for f # BA

p, % . The lemma is proved. K

For m # Zd, denote by Tm the space of all trigonometric polynomials of
order�mj in the variable xj , j=1, ..., d. It is easy to check that for every
f # Tm

f = :
k # U(m)

f (hk) Sm( } &hk), (33)
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and in addition there hold the Marcinkiewicz type inequalities

& f &p �� `
d

j=1

m&1�p
j &[ f (hk)]& l p

s(m) , 1�p��, (34)

(see [5]) where the kernel Sm is defined in (14), h :=(2?�3)(m&1
1 , ..., m&1

d ),
U(m) :=[k # Zd

+ : kj<3m j , j=1, ..., d] and s(m) :=>d
j=1(3m j).

4. NON-LINEAR WIDTHS OF CLASSES OF FUNCTIONS

Again, denote by #n any one of :n , {n , {$n , ;n , an and $n . In this section
we find the asymptotic orders of #n of SWA

p and SBA
p, % in the space Lq .

Theorem 1. Let 1<p, q<�, 2�%�� and A be a finite subset of Rd

with +(A)>max[0, d�p&d�q, d�p&d�2]. Then we have

#n (SBA
p, % , Lq) �� (n� log& n)&r (log& n)1�2&1�%, (35)

#n (SWA
p , Lq) �� (n� log& n)&r. (36)

In addition, we can explicitly construct a positive homogeneous continuous
mapping G*: Y � Mn such that the asymptotic order E(n) is achieved by the
continuous algorithm S of n-term approximation by V, i.e.,

sup
f # SY

& f&S( f )&q<<E(n),

where S :=RV b G*. E(n) is the right-hand side of either (35) or (36) and Y
is either BA

p, % or WA
p , respectively.

Theorem 1 will be proved from the following

Theorem 2. Let 1�p, q��, 1�{�%�� and A be a finite subset of
Rd with +(A)>(d�p&d�q)+ . Then we have

#n (SBA
p, % , Bq, {) �� E%, {(n), (37)

where

E%, {(n) :=(n�log& n)&r (log& n)1�{&1�%.
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In addition we can explicitly construct a positive homogeneous continuous
mapping G*: BA

p, % � Mn such that the asymptotic order E%, {(n) is achieved
by the continuous algorithm S of n-term approximation by V, i.e.,

sup
f # SB A

p, %

& f&S( f )&q<<E%, {(n), (38)

where S :=RV b G*.

Proof of Theorem 2. We first construct a positive homogeneous con-
tinuous mapping G*: BA

p, % � Mn satisfying (38), and, therefore by the
definition of :n , {n , Lemma 5 and the inequalities (7)�(8) prove the upper
bound of (37). We carry this out for the case of :n and p<q, %>{. The
remaining cases can be similarly proved with slight modifications. Without
lost of generality we can assume that n=2m, an even number. From
(33)�(34) and Lemmas 7 and 9 one can prove that a function f belongs to
BA

p, % if and only if f can be represented by a series

f = :
k # Zd

+

:
s # Qk

fk, s .k
s ,

converging in the norm of Bq, { , and, in addition

& f &B A
p, %

�� &D( f )&bN
p, % (4) , & f &Bq, {

�� &D( f )&bNq, { (4$) , (39)

where Qk and hk are in (15), N :=[Nk]k # Zd
+

, Nk=|Qk |,

4 :=[*k]k # Zd
+

, *k=2&S(A, k)+(1, k)�p, 4$ :=[* $
k]k # Zd

+
, *$k=2(1, k)�q],

and D is the positive homogeneous continuous mapping from BA
p, % into

BN
q, {(4$), given by

D( f ) :=[xk]k # Zd
+

, xk :=[ fk, s]s # Qk
.

Take a function !=!(n) satisfying the condition

3(4d+2d) J(!)�m<C 2!�r!&, (40)

where C is an absolute constant whose value will be chosen below, and
J(!) :=�k # 1(!)2

(1, k). Let the sequence [nk]k # Zd
+

be given by

nk :={ |Qk |,
[3C &1m2(1&=�r) !!&&2&S(A= , k)],

for k # 1(!)
for k # 1� (!),

and the sequence [bk]k # Zd
+

be given by

bk :={0,
(3C&1m2(1&=�r) !!&&2&S(A= , k))&=,

for k # 1(!)
for k # 1� (!),
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where = :=1�p&1�q>0. By Lemma 1 :n (B |Qk|
p , l |Qk|

q )�bk , k # Zn
+ . By using

Lemma 8 we can easily verify that �k # Zd
+

nk<�. Note that 0<=<r by
Lemma 8, and :nk

(B |Qk|
p , l |Qk|

q )=0 for k # 1(!). Hence, :nk
(B |Qk|

p , l |Qk|
q )�bk for

k # Zd
+ . Denote by H(!) the subset of 1� (!) which consists of all k # 1� (!) such

that the set [x # Rd
+ : kj&1�xj<kj , j=1, ..., d] has a non-empty intersec-

tion with the set [x�! # Ao
+ : (1, x)=1�r]. We put s=s(n) :=|H(!)|, !=!(n).

Suppose that Zd
+ is rearranged as Zd

+=[kj]�
j=1 so that

+k1
�+k2

� } } } +kj
� } } } , (41)

where +k :=bk*k�*$k . By Lemma 2 we construct a positive homogeneous
continuous mapping G: bN

p, %(4) � Mn$ so that

&x&RE(G(x))&B Nq, { (4$)�F%, {(s)&x&BNp, % (4) , (42)

where E is the canonical basis in bN
q, {(4$) and F%, {(s) is defined by the

formula (20) for our case, and

n$= :
s&1

j=1

Nkj
+ :

�

j=s

nkj
.

We define the positive homogeneous continuous mapping G*: BA
p, % � Mn$

by G* :=G b D. Note that D( f &RV(G*( f )))=D( f )&RE(G(D( f ))).
Hence, by (39) and (40) it is easy to check that

& f&RV(G*( f ))&Bq, {
<<F%, {(s) & f &B A

p, %
. (43)

We will check the inequalities n$�n for C large enough and

F%, { (s)�E%, { (n). (44)

This implies that for the positive homogeneous continuous mapping G*
from BA

p, % into Mn , there holds the estimate (38).
By the definition of the quantity & in (11) we see at once that |H(!)| ��

!& and, moreover, +k=supk$ # 1� (!)+k$ for any k # H(!). Hence according to
(41) we have by Lemma 2

n$� :
k # H(!)

|Qk |+ :
k # 1(!)

|Qk |+ :
k # 1� (!)

3C&1m2 (1&=�r) !!&&2&S(A= , k).
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From the inclusion k&1 # 1(!), k # H(!), the inequality |H(!)|�|1(!)|,
Lemma 8 and (40), we can continue this estimation as follows

n$�2d :
k # H(!)

3.2(1, k)+ :
k # 1(!)

3.2(1, k+1)+3C&1m2(1&=�r) !!&& :
k # 1� (!)

2&S(A= , k)

�3(4d+2d) J(!)+3aC&1m�n,

for C=C(d, a) large enough where a is an absolute constant (see Lemma 8).
Thus the inequality n$�n has been proved.

Put \ :=%{�(%&{)>0. From the equality S(A, } )&=(1, } )=S(A= , } ),
Lemmas 2 and 8 we have

F\
%, {(s)� :

k # 1� (!)

+\
k� :

k # 1� (!)

(bk2&S(A= , k))\

�(3C&1m2(1&=�r) !!&&)&\= :
k # 1� (!)

2&\(1&=) S(A= , k)

�� (m2(1&=�r) !!&&)&\= 2&\(1&=)(1&=�r) !!&.

Hence using (40), by a simple computation we obtain (44).
Let us prove the lower bound of (37). By the inequalities (7)�(8) and

Lemma 4 it is sufficient to prove this lower bound for {n . We will need
some additional inequalities. If W is a compact subset in the finite dimen-
sional normed space X, from the inequality 2an (W, X)�bn (W, X) [18,
p. 220] and Lemma 5 it follows that

2{n (W, X)�bn (W, X). (45)

Here the Bernstein n-width bn (W, X) is defined by

bn (W, X) :=sup
M

sup [t>0 : tSX & M/W],

where the outer supremum is taken over all (n+1)-dimensional linear sub-
spaces M of X. The proof of the following assertion is similar to that of
Lemma 2.3 in [9]. If Y is a subspace of the normed linear space X, W is
a subset of X and P: X � Y is a linear projection with &P( f )&�
* & f &(*>0) for every f # X, then

{n (W, X)�*&1{n (W, Y). (46)

We now proceed with a proof of the lower bound of (37) for {n . Because
of the inclusion SBA

�, % /SBA
p, % , it is sufficient to treat the case p=�. Put
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w(!) :=maxk # 1(!)(1, k), and Q(!) :=[k # 1(!) : (1, k)�w(!)&d]. Denote
by B(!) the space of all trigonometric polynomials f of the form

f = :
k # Q(!)

:
s # Qk

fk, s.k
s ,

and for 0<`, '�� denote by B(!)`, ' the subspace in B`, ' which consists
of all f # B(!). Lemma 7 and the inequality S(A, k)�!, k # Q(!), give
& f &BA

�, %
�� 2! & f &B�, %

, f # B(!)�, % . This implies a$2&!SB(!)�, % /SBA
�, % ,

with some absolute constant a$>0. Therefore,

{n (SBA
�, % , Bq, {)>>2&!{n(SB(!)�, % , Bq, {).

Using (39) and applying (46) to the linear projection

P(!, f )= :
k # Q(!)

:
s # Qk

fk, s.k
s

in the space Bq, { , we obtain

{n (SB(!)�, % , Bq, {)>>{n(SB(!)�, % , B(!)q, {),

and consequently,

{n (SBA
�, % , Bq, {)>>2&!{n(SB(!)�, % , B(!)q, {). (47)

Let us now give a lower bound for {n(SB(!)�, % , B(!)q, {) by using
Lemma 4 with X=B(!)q, { , Y=B(!)�, % and W=SB(!)�, % . Note that in
our case all these spaces are finite dimensional. Therefore their norms are
equivalent and SB(!)�, % is compact in these norms. Thus we have

{n+m(SB(!)�, % , B(!)�, %)�{n (SB(!)�, % , B(!)q, {) {m(SB(!)q, { , B(!)�, %),

(48)

for any m and ! satisfying the condition

dim B(!)>n+m, (49)

which obviously implies the inequality {n (SB(!)�, % , B(!)q, {)>0. Below we
will define such an m=m(n). By the definition bn+m(SB(!)�, % , B(!)�, %)�1,
and consequently by (45) 2{n+m(SB(!)�, % , B(!)�, %)�1, for any m with
the condition (49). This and (48) give

2{n (SB(!)�, % , B(!)q, {)�1�{m(SB(!)q, { , B(!)�, %). (50)
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This inequality implies that a lower estimate for {n (SB(!)�, % , B(!)q, {) can
be obtained from an upper estimate for {m (SB(!)q, { , B(!)�, %). We get this
upper estimate by applying the method use to establish the upper bound
for (37). We outline a brief proof of this bound. By (39) and the
inequalities !�r&d�w(!)�!�r we have

& f &B(!)�, %
�� &D( f )&bN

�, %
, & f &B(!)q, {

�� 2&!�rq &D( f )&b N
q, {

, (51)

where N :=[Nk]k # Q(!) , Nk=|Qk | (for simplicity we use the same notation
as in the upper bound for different sequences and quantities). Given n, we
define !=!(n) as any function of the variable n, satisfying the inequalities

n<4&d&1 |Q(!)| 2w(!)<<n. (52)

Let the sequence [nk]k # Q(!) be given by nk :=n*=[2w(!)&2d&2] and the
sequence [bk]k # Q(!) by bk :=(2w(!)&d&2)&1�q, where !=!(n). Note that
Nk�N*=6d .2w(!), k # Q(!), and by Lemma 1 {nk

(BNk
q , lNk

� )�bk , k # Q(!).
Let the set Q(!)=[k1 , ..., kl], l=|Q(!)|, be ordered so that +k1

�+k2
�

} } } �+kl
, where +k=bk (note that l<�). Similarly to (43), by using

Lemma 2 for the case %={ and Lemma 3 for the case %>{ from (51) we
establish the following estimate:

{m (SB(!)q, { , B(!)�, %)<<2!�rqF $(s),

where s=s(n) :=[2&5d&2 |Q(!)|], m=(s&1) N*+(l&s+1) n* and

F $(s)={(� s
j=1 +\$

kj
)1�\$,

+ks
,

for %>{
for %={,

with \$ :={%({&%). Hence,

{m (SB(!)q, { , B(!)�, %)<<!&&(1�{&1�%). (53)

Note that B(!) contains the space of dimension |2(!)| 2w(!)&d of all tri-
gonometric polynomials f of the form f =�k # 2(!) $k f, where 2(!) :=
[k # 1(!) : (1, k)=w(!)]. Hence, dim B(!)>|2(!)| 2w(!)&d�4&d |Q(!)| 2w(!).
On the other hand, it is easy to verify that m�2&2d&1 |Q(!)| 2w(!). Hence,
by (52) we can see that m satisfies (49). Combining (47), (50), (53) gives

{n (SBA
�, % , Bq, {)>>2&!!&(1�{&1�%) �� E%, {(n).

The lower bound of (37) is proved. K
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Proof of Theorem 1. By using the Littlewood-Paley Theorem and
Lemmas 6�7 it is easy to verify the inequalities

& f &B '(q), 2
<<& f &q<<& f &B `(q), 2

& f &B A
' (p), 2

<<& f &WA
p
<<& f &BA

` (p), 2
,

for 1<p, q<� where '(t) :=min[t, 2], `(t) :=max[t, 2]. Hence it follows
that

#n (SBA
p, % , B'(q), 2)<<#n(SBA

p, % , Lq)<<#n(SBA
p, % , B`(q), 2),

#n(SBA
`( p), 2 , B'(q), 2)<<#n(SWA

p , Lq)<<#n(SBA
'( p), 2 , B`(q), 2).

This and Theorem 2 imply Theorem 1. K

5. BEST n-TERM APPROXIMATION OF CLASSES OF FUNCTIONS

In this section we obtain the asymptotic order of the best n-term
approximation by V of SWA

p and SBA
p, % in the space Lq .

Theorem 3. Under the conditions of Theorem 1 we have

_n (SBA
p, % , V, Lq) �� (n�log& n)&r (log& n)1�2&1�%,

_n(SWA
p , V, Lq) �� (n�log& n)&r.

As in the proof of Theorem 1, this theorem is obtained from the
following

Theorem 4. With the conditions and notation of Theorem 2 we have

_n (SBA
p, % , V, Bq, {) �� E%, {(n).

To prove Theorem 4 we need some auxiliary lemmas.

Lemma 10. Let the linear space L be (quasi-) normed by two
(quasi-) norms & }&X and & }&Y , and W be a subset of L. Assume that 8 is a
family of elements in X such that _m (W, 8, X)>0. Then we have

_n+m (W, 8, Y)�_n (SX, 8, Y) _m (W, 8, X).

Proof of Lemma 10. The proof of this lemma is similar to that of
Lemma 4. K

Lemma 11. Let 1�p, %��, N=[Nk] s
k=1 be a finite sequence of

natural numbers with ;N�Nk�N, k=1, 2, ..., s, for some ;>0. Let

240 DINH DUNG



8=[.k]M
k=1 , M=� s

k=1Nk , be any family of elements of lN
p, % , and Kp, % be

an arbitrary m-dimensional cross-section of the unit ball SN
p, % . Assume that

*M�m�M for some *>0, and n�m�2. Then we have

_n (Kp, % , 8, lN
p, %)�C,

where C=C(;, *)>0.

Proof of Lemma 11. Lemma 2 in [10] gives

_n (K�, � , 8, bN
1, 1)�C(*) M. (54)

Hence we obtain Lemma 11. Indeed, by the inequality & }&b Np, %
�

s1�%N1�p & }&bN
�, � , we have Kp, % #s&1�%N &1�pK�, � . On the other hand, it is

easy to check that & }&bN
p, %

�s1�%&1N1�p&1 & }&bN
1, 1

. Therefore, by (54)

_n (Kp, % , 8, bN
p, %)

�(s&1�%N &1�p)(s1�%&1N1�p&1) _n(K�, � , 8, bN
1, 1)�;C(*). K

Proof of Theorem 4. The upper bound for this theorem follows from
(38) in Theorem 2. The lower bound can be proved in a manner similar
to the proof of the lower bound for (37) in Theorem 2, using Lemmas 10
and 11. K

Example. Let : # Rd with positive coordinates. Denote by W1 :
p and B1 :

p, %

the subspaces of W[:]
p and B[:]

p, % , respectively, which consists of all functions
f such that

|
?

&?
f (x) dxj=0, j=1, ..., d.

Without loss of generality we can assume that

0<r=:1= } } } =:&=:&+1<:&+2� } } } �:d (0�&�d&1).

If 1<p, q<�, 2�%�� and r>max[0, d�p&d�2, d�p&d�q], then from
Theorems 1 and 3 one can easily deduce that

#n (SB1 :
p, % , Lq) �� _n(SB1 :

p, % , V, Lq) �� (n�log& n)&r (log& n)1�2&1�%,

#n (S1 W :
p , Lq) �� _n(S1 W :

p , V, Lq) �� (n�log& n)&r.
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